

CalRecycle Zone Works Workshop May 7, 2014 - Sacramento, CA

Joe Rasmussen, Ed.D.

LEED AP BD+C

Environmental Scientist

CalRecycle

- Food Waste Dehydrators and Liquefiers
 - > Technology Descriptions
 - > Technology Examples
 - Case Studies
 - Claims Made by Vendors
 - Places Within the Food Cycle
- Food Recovery Hierarchy
- Conclusions and Implications

Above: Non-hazardous waste management hierarchy, U.S. EPA:

http://www.epa.gov/waste/nonhaz/municipal/hierarchy.htm

Technology Description

Dehydrators

- Water removed from heat and turning; "dry system"
- Volume & mass reduced 70-90%; batch system⁽¹⁰⁾
- Can be coupled with pulping or dewatering prior to dehydration⁽⁴⁾
- Residual Materials = Dehydrated Food Waste and Condensate Water
- Dehydrated Food Waste is NOT compost⁽¹⁾

Left: Los Angeles Mission College, 2010.

Technology Description

Above: Dehydrated Food Waste from Loyola Marymount University, 2010.

Technology Example

Somat eCorect® DH-100w

- Capacity = 220 lbs. daily/18-hour cycle⁽⁹⁾
- Electricity Usage = Daily estimate 3 kW⁽⁴⁾
- Temperature = Up to 180° $F^{(9)}$
- Unit Cost = Approximately \$32,000⁽⁴⁾

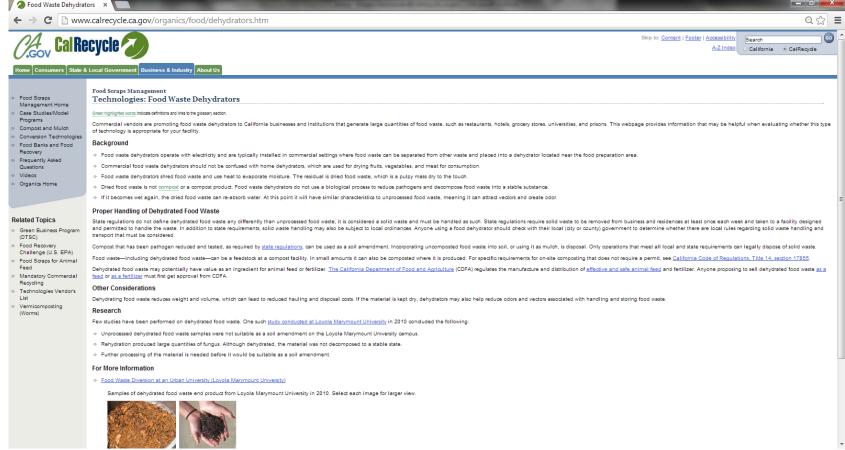
Right: Costco in Irvine, CA, 2008.

Claims made by vendors:

- "The end product is a material ideal for use as soil amendment."
- "Decomposes compostable waste without using microorganisms, enzymes or additives."
- Condensate water is "sterile water for landscaping or other recoverable use."
- "Reduces carbon footprint."
- "Zero environmental impact."

The Food Cycle

Food Soil **Food Waste Amendment Food Cycle** Only **Maintained** With Further **Processing Direct Land Compost or Food Waste Application Anaerobic Dehydrator Digestion** ***Illegal in California Loss of valuable organic matter **Dehydrated food** waste should be sent


Source: CalRecycle website http://www.calrecycle.ca.gov/Laws/ Regulations/Title14/ch31a5.htm

to composting or AD

Landfill

Cal Recycle 2

New Dehydrators CalRecycle Webpage

California
State Regulation

Dehydrated food waste is <u>food waste</u>.

Land application of food waste is <u>disposal</u>.

Title 14, Section 17852 (a)(15)(C)

http://www.calrecycle.ca.gov/Laws/Regulations/

Title14/ch31.htm

Dehydrators

Case Study:

California State Teachers Retirement System (CalSTRS) West Sacramento, CA

- 13-story building, completed in 2009
- 490,000 sq. ft. of office space
- 2 LEED certifications:

Gold - LEED BD+C: New Construction v2.1 (2009)

Platinum - LEED O+M: Existing Buildings v2009 (2011)

 Request for LEED Innovation in Design credit for dehydrator was reportedly denied by USGBC

Above: CalSTRS Building, West Sacramento, CA, 2014.

Dehydrators

Case Study:

CalSTRS Building West Sacramento, CA

- Somat eCorect® food waste dehydrator
- Leased from WM, Inc. (2009 2014)
- Feedstock: Pre-consumer food waste
 - Post-consumer food waste also diverted, but not put through dehydrator
- Did not attempt to use dehydrated food waste as a soil amendment

Above: Food Waste Dehydrator at CalSTRS building in West Sacramento, CA.

Case Study:

Dehydrators

CalSTRS Building

West Sacramento, CA

Monthly food waste generation:

- 45 cy = post-consumer (sent directly to composting)
- 2 cy = pre-consumer (dehydrated, then composted)
- Both sent to Northern Recycling Compost Zamora

Left: Compost windrow at Northern Recycling Compost – Zamora.

Example:
CalSTRS Building
West Sacramento, CA

Dehydrators

- Dehydrator needed frequent mechanical repairs
- CalSTRS ended dehydrator lease in 2014
- All food waste diverted now hauled to the Clean World Sacramento Anaerobic Digester

Left: Clean World Sacramento Digester, West Sacramento, CA, 2014.

Food Waste Liquefiers

Technology Description

- Converts food waste into wastewater effluent; "wet system"(4)
- Mechanical turning; continuous feed system
- Potable water continually added; hundreds of gallons/day
- Plastic chips sometimes used; microbe habitat and to aid turning
- Proprietary microbes and/or enzymes may need to be added
- Wastewater effluent byproduct sent to sewer system(3)

Left: Power Knot LFC-70 liquefier at the Fujitsu campus in Sunnyvale, CA. Photo credit: BioCycle, 2014.

Food Waste Liquefiers

Technology Example

ORCA Green™ Machine Model OG600

- Capacity: 600 lbs. (every 1 2 days)
- Electricity Usage: 0.37 kw⁽⁴⁾
- Unit cost: Rental only \$1,000 \$2,000/month(4)
- Food waste processed in 24 48 hours
- Water Usage
 - ➤ Uses approx. 175 gallons/day⁽⁷⁾
 - ➤ Generates approx. 300 gallons/day⁽⁷⁾

Above: ORCA Totally Green unit. http://www.totallygreen.com/

Liquefiers

Case Study: Loyola Marymount

University, Los Angeles, CA

- ORCA Totally Green liquefier installed at LMU in 2011
- Used primarily for food waste from catered events
- Effluent sent to Hyperion Wastewater Treatment Plant
- ORCA liquefier was utilized for approximately 2 years
- The unit was removed in 2013 after a mechanical failure
- Replaced the ORCA with a Somat food waste dehydrator

Left: Loyola Marymount University, Los Angeles, 2012.

Liquefiers

Case Study: Loyola Marymount University, Los Angeles, CA

- LMU partnered with CSU, Northridge to study the liquefier
- CSUN Master's Thesis studied ORCA Ms. Maryam DeHaghin
- Results: ORCA effluent much "stronger" than raw sewage
- High levels of fecal indicator bacteria (pathogen indicator)
- High levels of BOD, FOG, TSS, Nitrates and Phosphates (3)

Left: Faculty and students in the environmental science laboratory at Loyola Marymount University, Los Angeles, 2012.

Food Waste Liquefiers

Claims made by vendors:

- "Effluent can be re-used for irrigation and agricultural applications."
- "There are no by-products, this water can go down the drain or gets recycled for gardening."
- "The liquid compost is channeled through the sewer system or can be returned to the soil as nourishment."

Food Waste Liquefiers

Food Cycle

Disposal,
ADC, Land
Application
for Nonfood Crops,
Etc.

Compost

*** Only 16% of CA biosolids are composted

Biosolids

Food

Food Waste

Food Cycle is Not Optimally Maintained

Wastewater
Treatment
Plant

Loss of potential to generate biogas

Food Waste

Liquefier

Direct Land Application

Land application is most likely detrimental; effluent may contain pathogens and/or other contamination.

Cal Recycle 🤣

*** Source: CalRecycle website

http://www.calrecycle.ca.gov/Organics

/Biosolids/#Application

Food Waste Dehydrators and Liquefiers

Food Recovery Hierarchy

Food Recovery Hierarchy

www.epa.gov/foodscraps

Source Reduction

Reduce the volume of surplus food generated

Feed Hungry People

Donate extra food to food banks, soup kitchens and shelters

Feed Animals

Divert food scraps to animal feed

Industrial Uses

Provide waste oils for rendering and fuel conversion and food scraps for digestion to recover energy

Composting

Create a nutrient-rich soil amendment

Landfill/

Incineration Last resort to disposal

- Dehydrated food waste must be disposed or sent to composting and/or AD
- Liquefied food waste is sent to the sewer with little to no beneficial use
- Without further processing, dehydration and liquefaction are low on the hierarchy

Understanding Implications Food Waste Dehydrators and Liquefiers

- Not stand-alone solutions; can be a link in a chain
 - ➤ **Dehydrators:** Can be coupled with composting and/or anaerobic digestion for full beneficial use
 - ➤ Liquefiers: Contact local wastewater treatment authority to understand sewer discharge implications
- Conduct a cost-benefit analysis to determine suitability
- Contact known users of the technologies for testimonials
- Do your homework; read literature to keep up to date

Conclusions and

References

- 1) Bergstrom and Rasmussen (2011) <u>Food Waste Diversion at Urban University</u>. BioCycle. Vol. 52, No. 12, p. 34.
- 2) DeHaghin (2014) <u>Food waste liquefier ORCA Green</u>. Masters Thesis, California State University, Northridge.
- 3) Dorsey and Rasmussen (2012) <u>Evaluating Food Digestion Effluent For Landscape Use</u>. BioCycle. Vol. 53, No. 9, p. 26.
- 4) Griffith-Onnen, Patten & Wong (2013) <u>On-Site Systems for Processing Food Waste: A Report to the Massachusetts Department of Environmental Protection</u>. Northeastern University, Boston, MA.
- 5) Neale (2013) <u>Analysis of Biodigesters and Dehydrators to Manage Organics On-site</u>. BioCycle. Vol. 54, No. 10, p. 20.
- 6) Neale (2014) <u>Biodigesters and Dehydrators Operational Experiences</u>. BioCycle Vol. 55, No. 1, p. 52.
- 7) ORCA Totally Green sales presentation: (http://www.swrl.com/images/orca_green_machine/ORCA-Sales-Presentation.pdf)
- 8) ORCA Totally Green website: (http://www.totallygreen.com/)
- 9) Somat Company website: (http://www.somatcompany.com/uploadedFiles/Content/Products/100w_rev2-11.pdf)
- 10) Spencer (2008) A New Generation Of Commercial Disposers. BioCycle. Vol. 49, No. 7, p. 27

