

The California Institute of Food and Agricultural Research (CIFAR) University of California (UC) Davis

Session IV: Introduction to Sustainable Manufacturing Ricardo Amón, CIFAR, UC Davis

> Calrecycle Zone Works Workshop November 14, 2013

CIFAR Technical Support Services To Food And Beverage Industrial Facilities

• CIFAR integrates knowledge and resources from UC Davis researchers, field specialists and US Department of Energy (DOE) Best Practices (BP) Qualified Specialists

 CIFAR conducts Energy System Assessments (ESAs) for steam, compressed air, process heat, pump and fan systems

• CIFAR coordinates delivery of intermediate, advanced and qualifications DOE Industrial BP training workshops

• CIFAR conducts Water-Energy Nexus (WEN) Assessments

•CIFAR conducts wastewater and organic solid residue to bioenergy assessments

Introduction to Sustainable Manufacturing

A Whole Systems Approach that integrates

skilled labor with the proper use of industrial

manufacturing equipment, to best utilize the

consumption of production **resources**

A Whole Systems Approach

Identifies the inter-connections that exit within an industrial production system to reveal inefficiencies and discover opportunities to optimize not only the performance of system components (steam, compressed air, pumps, cooling towers) but the system as a whole

Integrates Skilled Labor with Proper Use Of Industrial Manufacturing Equipment

Skilled Labor requires education and training to best operate

system components and maintain system efficiency. Proper use

of industrial equipment (boilers, compressors, pumps) requires

oversight to evaluate system performance (steam, air, water),

and to repair and replace components (impellers) to maintain

operational system efficiency

CIFAR Industrial Best Practices and the Water Energy Nexus

Best Utilize the Consumption of Production Resources

Industrial Energy – Depends on Fossil Fuels

60% on-site burned natural gas and liquid fuels 40% delivered electricity consumption

Industrial Water – Depends on Ground Water and Surface Water Sources

A medium-sized tomato processing facility can utilize over 350 million gallons of fresh water to process over 1,000 tons of tomatoes per season

Industrial Waste Water – Discharged on Land or Processed at Waste Water Treatment Facilities

17 California tomato processing facilities annually discharge 5.7 billion gallons of wastewater

Industrial Air – Discharged CO2, NOx and Particulate Air Emissions A medium-sized tomato processing facility can emit over 30,000 metric tons of carbon dioxide per season

Resource Efficiency is Sustainability

Adopting Efficiency Is Not A Risk

- Efficiency requires leadership
 - To continuously **assess** whole system performance
 - To continuously **improve** operational efficiency
- Efficiency requires skilled labor, engineers and managers
- Efficiency requires a systematic continuous improvement process

Practicing Industrial Efficiency

Evaluate the performance of all energy assets to establish a base line, to identify resource conservation and efficiency measures, to adopt continuous improvement practices.

Evaluate the **potential** to capture and reuse **waste heat**, to generate combined heat and power, to **integrate** efficiency with the use of **renewable energy** – solar PV, solar thermal, bioenergy

Adopt Industrial Best Practices

Industrial BPs are continuously used by skilled labor to reduce overall

energy intensity per unit of product produced (therms/ton) and to reduce

water energy intensity per unit of resource used (kWh/1000 gallons of

water)

UC Davis Sustainable Winery Building

This \$4 million state-of-the art building will enable the adjacent teaching and research winery, brewery and food-processing facilities to operate in a self-sustainable manner through onsite capture of energy and Water. http://news.ucdavis.edu/search/news_detail.lasso?id=10608

The 8,500 square-foot building will house equipment and systems to capture and sequester carbon dioxide from wine fermentation, and to filter and recirculate water for wine, beer and food processing. The building is expected to be certified Net Zero Energy under the Living Building Challenge. http://news.ucdavis.edu/search/news_detail.lasso?id=10608

Continuous Improvement and Industrial System Assessments

Continuous Energy Improvement

The Compressed Air Challenge

The Steam System

The Motor, Pump and Fan Systems

The Water Energy Nexus

A maintenance excellence process is essential for reliability and the data to support continuous improvement

CIFAR Industrial Best Practices and the Water Energy Nexus

Energy Mapping

- Flow Chart Energy Use in Site Production Processes
- Consider Key Energy Streams
- Identify Attributes of Significant Energy Use's (SEU's)
- Locate Data Capture Capabilities
- Overlay Known Energy Saving Opportunities
- Identify Energy Saving Opportunities
- Note Unknowns / Systems Needing Further Analysis
- Failure analysis

Monitoring, Tracking & Reporting

continuous monitoring & SCADA based feedback systems

Energy Performance Indicators

CIFAR Industrial Best Practices and the Water Energy Nexus

Targets and Energy Performance Indicators

Measurement & Data Collection Plan for EnPI's

	1			1
Total kWh / Unit Produced	Mfg kWh/Unit Produced Heat Treat kWh/Unit	kWh/CF	kWh/month	kWh/employee/year
Gal Water / Produced	produced	(monthly)	therms/month	
Total kWh Saved - CUSUM	(daily)		kWh & therms saved -	
			Individual CUSUM	
(monthly)			models	
			with temperature as	
			driver	
OVERALL SITE	MANUFACTURING	COMPRESSED AIR	HVAC	OFFICE
Total Site Electricity	Total Output	Total Electricity	Total Electricity	Total Electricity
kWh/day	Units/Shift	kWh/day	kWh/day	kWh/day
Existing Site Meter	ERPsystem	New Submeter	New Submeter	New Submeter
Total Water	Total kWh	Air Volume	Total Natural Gas	
Gal / month	kWh/day	CFM delivered/ day	therms/month	
Existing Water Meter	New Submeter	New Flow Meter	Existing Gas Meter	
	Heat Treat	Plant Pressure		
	kWh/day	PSI / lowest point		
	New Submeter	New Flow Meter		

PG<mark>&</mark>E

Documents Current State Establishes Baseline and Goal Prioritizes Opportunities (Capital & Non Capital) Ties to PG&E / UCD / Other Programs Assigns Accountabilities Determines Budget

- Allocates Resources
- Scheduled Review

Strategic E-Mgmt Plan

- Projects / Activities	Status/Completion	Targeted Completion	Accountable	Extimated	Estimated Savings	Estimated Savings	Comme
4946040	Data			Annual Savings	kWh	Therms	-
tin Polici		92	a	-> ->		o	
Cooling Tower Pumps, WD	Complete		Agus Sumantri		772,834		2
Cool Roof	Complete		Agus Sumantri		9,031		
Cooling Tower Fan WD's	Complete	C	Agus Sumantri		59,771		
water vro	Complete		Lave April		255 000		_
for Implementation	- deligned						
N (6) Deep Well, Motor, Fump and VFD	Pending	5/15/2011	Devid Albright	\$25,430	222,325		
S (5) Deep Well Pump	Pending	5/15/2011	Devid Albright	\$20,309	260,524		
CT New Down Turne	TBO	2012 - Estimate	David Abright	\$2,687	12 513		-
Weak Acid Pumps w/VFD	TED	2011 - Data Collected	David Albright	\$3,560	29,721		
Process Condensate Pump	TBD	2011 - Data Collected	David Albright	\$5,186	43,287		
Holstein Tank Pump	TBD	2012 - Deta Collected	David Albright	\$3,843	\$2,120		
Replace FAH with Rediant Heaters Office Aligns lights with sectors, \$20,000 estimated social 3015	Pending	3/1/2011	David Alonghi	313,138		15,151	
and the second							
** Cooling Tower - resizing the pump or a third cell	Started Review -	0 7		-			5
	Further Investigate	03:	Gerald Schreider - UM	180	Ob;		
Solar Power Generation Option	Have 2 Quotes -	50	Don Startevent and	Variation	Plane P		
	undetermined at this	160	Martin	120	TED		
Compressed Air Survey	Nexent	4/1/2011	Gus Sumentri	TBD	750		8
Natural Gas Survey - Nexant to submit proposal for cost	Nezarit	TEO	Devid Albright	TBD		780	
Improved Product Metering	780	9/1/2011	Gus Sumentri	TBD	TEO		
Steam Survey / Steam Traps / Piping / Insulation	INSC 411	5/1/2011	Mark Lytin Nate Rutterbush and	150	TBO		-
Seberar Meterical - Conference Any Carcology Strate	TBD	TBO	David	TBD	TEO	750	
VFD for 10-34-0 Cooling Tower Fish	Data Loggers TBD	On Hold	Geraid Schneider - UM	1 S	į. į		
COSCIER ACTIVITIES	Sector and sector and the sec						
Desaire Energy Policy	8/11/2010		Matt Erank	Det of CEL			
Savision	414,101	8/11/2011	David Albright	Part of CEI	1		
include in new hire packets		4/30/2011	Plient Trainer	Part of CEI			
Targets / Reporting		16			6 U		
			Agus Sumarity, David	Contrary in Barlans			
Futability (Ph	2/5/2015	Ter Dre Complete	Frarie	tracked to goal			
		The doc some		Calculated			-
Track energy savings to goal (Plant Tracking Tool)	9/1/2010	9/1/2011 for 2011	Mark Lynn	Monthly			1
Update progress to annual goal	9/1/2010	9/1/2011 fer 2011	David Albright				2
Track capital, non-capital, and behavioral projects/activities (Orgoing	Canital needarts for	9/1/2011 for 2011	David Albright	Tracked with Brokets/ Energy			
and any second on survey way	2011 we ongoing			Mac			
tians / Setions							
Develop SEMP - review / update on on-going basis	9/2/2010	Updated Arrivally	SEG/Erangy Team				
Unchaired dependence project pain	9/2 /2010	9/1/2011 Sec 2017	Matt Frank				
Estimate savings by project and cumulative	~~~			2			
Energy Map - Phase 1	7/8/2010	Ongoing Updates	SEG/Energy Team	2	1		
MT&R	1. 1920 1.00						
Initial Interview / Collect Data	Divigoling	4/3/2011	550				
Training on plant El model	-	4/30/2011	SEG/David Albright	1 1 2			-
Teams / Committees		10					
Regular Crengy Team Meetings	8/31/2010	4	David Albright		4		_
crours appropriets Org Representation on Lenergy Team	8/33/2030	1	unred Albright				-
Employee Awaraness / Training				3 8			1
implement plant energy awareness campaign	10/27/2010		David Albright	8			5
Plant Kickoff Event	10/27/2010		Mark Lynn		2		
Wheel of Energy - have recognition program	3/1/2010	2010001	David Albright				5
Regular energy efficiency training (in person &/or webcast)	Will be Ongoing	4/1/2011	Mark Lynn				
Compressed Air		5/1/2011	Mark Lynn				
Pumping Systems		5/1/2011	Mark Lynn				
Motor systems		6/1/2011	Mark Lynn				
Deam Systems		3/1/2011	Mark Lynn				
Develop training matrix for OSM personnel	1	4/1/2011	Mark Lynn	i			
Energy Leadership Training		5/1/2011	Mark Lynn				
Execute the Energy Awareness Program (Plant Rollout completed on							
10/27/10) Total Res Cande	100110000	10/27/2010	David Albright				
Monthly Energy Topics During Safety Training	1/1/2011		Mett Frank				
Leak Tag Program		4/1/2011	David Albright	i			
	10/27/2010	Oneping	Devid Albright				
Energy Awareness Posters (PG&E Resource)							
Energy Awareness Posters (PG&E Resource) Energy Sulletin Board	10/27/2010	Ongoing	David Albright				

CIFAR Industrial Best Practices and the Water Energy Nexus

Employee Awareness & Training Case Study: The Compressed Air Challenge

Leaks are not only costly, but messy!

- ASME Energy Assessment for Compressed Air System Standard
- Log Tool Version 2.0
- AirMaster+
- Engineering Calculations

Source: http://www1.eere.energy.gov/manufacturing/tech_assistance/software_airmaster.html

DOE AirMaster+ Software Analysis Tool

Inventory System Enhan	cements Calculators Help		
	A IRM	aster*	
	Company	Efficiency Measures	
	Utility	Maintenance	
	Facility	Catalog	
	System	Life Cycle	
	Compressor	Print Data Input Forms	
	Profile	Exit	
Mountain Springs Brewery	C.VPROGRAM FILESVAIRMASTER	+VAMSAMPLE.MDB Version 1.2.3 08/	23/10 12:36 PM

Source: http://www1.eere.energy.gov/manufacturing/tech_assistance/software_airmaster.html

Summary of Results for Compressed Air ESAs Conducted at Eight California Food Processing Plants 2006-2013

				D 1 1	¥ 1.•1•.
Communed Air ECA = 2006 12	1-34/1- /	¢/	f Estimated Cost	Payback	Utility Desite or
Compresed Air ESAs 2006-13	KVVN/Yr	\$/yr Saved	5 Estimated Cost	rears	Farther
Fruit Canning	1,042,018	57,311	100,000	1.74	MID
Tomato Processing	131,476	8,000	5,000	0.63	MID
Raisin Processing	482,501	48,250	100,000	2.07	PG&E
Tomato Products Canning	176,555	25,442	20,000	0.79	PG&E
Potato Chips Manufacturing	1,500,000	150,000	50,000	0.33	MID
Tomato Paste	474,417	71,163	30,000	0.42	PG&E
Cereal Manufacturer	888,816	97,770	50,000	0.51	LodiElec.
Cheese Manufacturing	827,741	49,664	65,000	1.30	Tulare ID
Totals:	5,523,524	507,600	420,000		
Average:	690,441	63,450	52,500	1	

Source: <u>ttp://www.cifar.ucdavis.edu/Californias_Compressed_Air_Challenge_Final_Report.pdf</u>

RECURRING CONDITIONS IDENTIFIED BY ESAs

- System Inefficiencies Identified
 - Excess compressor capacity
 - Inadequate compressor controls
 - Excessive pressure drop
 - Inadequate air storage capacity
 - Distribution piping too small and/or poorly laid out
 - Artificial demand
 - Inappropriate uses of air
 - Air leaks

SUMMARY

- Compressed air is an expensive utility and is frequently misused
- Establish baseline and understand the dynamics between the supply and demand sides
- Repair air leaks
- Eliminate inappropriate uses of air
- Re-evaluate plant pressure requirements and lower if justified

Steam Energy System Assessments (ESAs) A Whole Systems Approach

- Often between 40 to 60 percent of a food processing facility energy costs are incurred to produce steam
- ESAs are conducted to evaluate Supply and Demand-side system components
- Focused on steam system heat recovery improvement opportunities
- Models and calculates steam and electric savings
- Whole systems approach is essential to optimize energy and cost savings

Steam System Assessment Analysis Tools

- DOE Steam Qualified Specialist
- ASME Energy Assessment for Steam System Standard
- Steam System Assessment Tool (SSAT)
- 3E Plus Insulation Calculator
- Engineering Calculations

Source: http://www1.eere.energy.gov/manufacturing/tech_assistance/steam.html

Data Required to Conduct Steam ESAs

•Natural gas consumption, costs, annual operating hours

- Steam generation system data: boiler flue gas temperature and oxygen are measured to estimate boiler efficiency; blow down rates
- Steam distribution system data: wall temperature of steam distribution system is measured to estimate piping insulation needs; steam traps
- Steam end use and condensate systems data: amount of steam used by processes and steam turbines, and amount of condensate return

Standard Steam System Components

Steam System Assessment Study

Average Energy Use @ Ten California Food Processing Facilities

Average Value	Large Plant	Small Plant
Electricity Use	68.8 million kWh	4.8 million kWh
Natural Gas Use	516,000 mmBtu	87,900 mmBtu

Steam System Assessment Study Identified Energy and Cost Savings

		Electricity				Electricity	
Large Facilities	% Gas Savings	Savings %	\$K/yr	Small Facilities	% Gas Savings	Savings %	\$K/yr
Meat Packing	27	1	\$910.50	Juice Bottling	16	18	\$400
Cheese Mfg.	8.5	-	\$531.30				
Cheese Mfg.	2	2	\$155.50	Instant Noodles	10	23	\$180
Brewery	8	-	\$144.50				+····
Beef Processor	0.5	3	\$139.60	Olive Co	17	10	\$204
Tomato Processing	0.9	17	1,107	Creamery	23.5	3.4	\$145
Avg	7		\$498	Avg	16.6		\$232

Summary of Recommended Steam System Energy Efficiency Measures

Energy Efficiency	NG Savings,	Cost Savings,	Energy Efficiency	NG Savings,	Cost Savings,
Measures (# times)	MMBtu/yr	\$/yr	Measures (# times)	MMBtu/yr	\$/yr
Improve Insulation (9)	500 – 1,870	3,500 - 14,000	Back P Turbine for	-2,464 to -6,940	39,000 –
			PRV (6)		1,077,000
Blowdown Energy	1,850 – 8,800	16,000 – 68,000	Steam Leak &	750 – 3,500	7,000 - 26,000
Recovery (8)			Maintenance (6)		, ,
Reduce Boiler	340 – 8,400	4,000 - 65,000		000 0 500	7 000 04 000
Blowdown (7)			Use of flash/vent	800 - 8,500	7,000 - 64,000
O2 Trim controls (6)	1.240 - 65.600	13.000 –	steam (4)		
	-,	506,000	Feed water	5,220 – 60,115	52,125 –
Increase Condensate	1,359 – 7,440	13,000 –	Economizer (3)		531,000
Recovery (6)	, ,	116,000	Reduce Steam	6,500 - 8,900	78,000 -
			Usage (2)		103,000

Summary

- Steam ESAs provide system performance base line
- Identify cost effective, environmentally sound energy efficiency measures
- Calculates steam condensate and vapor recovery efficiency
- The Steam ESA is used in the Water Energy Nexus to Identify water and energy conservation opportunities

The Water Energy Nexus @ Campbell Soup

- CIFAR has integrated data from the DOE assessment tools
 - Steam System Assessment (SSAT)
 - Pump System Assessment (PSAT)
 - Fan System Assessment Tool (FSAT)
- Data collection and software tools are integrated to conduct Water Energy Nexus (WEN) Assessments
 - Catalog and illustrate the water/energy intensity of all major process systems
- The WEN Assessment is designed to
 - Calculate pumping and fan system efficiencies
 - Identify performance inefficiencies and opportunities
 - Identify water conservation opportunities
 - Identify process design deficiencies and maintenance issues

Campbell Soup, Dixon, California, 2011 Source: Dixon Tribune

The Water Energy Nexus @ Campbell Soup

- The WEN Assessment creates an inventory of
 - Water demand/flow points (WEN Points)
 - Electrical and thermal energy inputs
- WEN Points are measured
 - Water Energy intensity (WEi) in kW/1,000 gals.
 - For each WEN point
 - Summarized for the entire facility

The Water Energy Nexus Systems Approach Supply and Demand-Side Analysis

• Supply-side WEN Points

- Groundwater pumping
- Steam generation system and water filtration equipment

• Demand-side WEN Points include

- Condensate return, evaporator condensing water, cooling towers
- Tomato transport flumes, sanitation pumps
- Wastewater systems
- Demand-side intensity (WEi) is driven by
 - Water velocity, pressure, volume, pump head
 - Pump types, pump wear, & instrument performance
- Demand-side has restrictions
 - Sprays, valves, orifices, pipe sizes, pump suction & discharge head

The WEN Assessment Discovery Process

- Some processes are not designed correctly
 - High water pressure, system cycling, instrumentation calibration errors
 - Excessive water flow velocity triggers excessive kW demand
 - Reverse Osmosis water misused
 - Single pass cooling
 - Lack of counter flow for 2nd/3rd water use
- Typical steam systems inefficiencies
 - Pressure let-down valves CHP opportunity
 - Lack of combustion oxygen controls, boiler flue gas
 economizer configuration
 - Poor quality steam flow metering & lack of boiler blow down heat recovery
 - Inadequate or lack of insulation, failure to return steam condensate

CASE STUDY: Tomato Water Recovery

- The Nature of Tomato Water
 - Tomato Water is the condensed vapors produced in tomato evaporators
 - Tomato Water is mineral free, at temperatures ranging from 120 degrees Fahrenheit (F) to 200 degrees F
 - Tomato Water contains some carryover tomato solid residues
- The Tomato Water Resource
 - ~ 80% of the tomato tonnage for paste is condensed from vapors in evaporators
 - Index: 100 tons of tomatoes processed/hour produces ~ 320 GPM of tomato water
 - 320 GPM TW may contain 10-11.0MM BTU/Hour of useable heat
 - Tomato Water discharged to cooling towers may represent 25-50% of plant cooling load

TOMATO WATER IS A WATER & PROCESS WASTE HEAT RESOURCE

Tomato Water Energy Conservation and Cost Savings Potential

Recovery of 70 Million Gallons of Tomato Water per Season

Avoided Energy	kWh Savings	\$ Savings
Well Water	176,400	22,050
Waste Water	29,400	4,305
Cooling Towers	236,800	35,520
Total	442,600	61,876
Recovered Energy	MMBtu	\$4.90 MMBtu
Tomato Water Heat	40,817	235,298

waste water cost savings are based on land application rather than more expensive municipal sewage system disposal

Summary

The Water Energy Nexus Assessment identifies:

- Individual & overall pumping, fan & boiler plant efficiency
- Cost savings & sustainability benefits
 - Preservation of ground water resources
 - Reduced wastewater organic load discharged on land
 - Commensurate air pollution reduction benefits
- Baseline data for continuous improvement
 - Identifies maintenance issues
 - Provides baseline data for continuous improvement
 - Creates data for process reliability & quality improvements
 - When implemented, may allow increased facility throughput

Wastewater management and BioEnergy Potential

Combined waste generation from 17 California tomato processors in 2009 (1):

				Electricity	Heat
			Energy content	potential	potential
		Annual quantity	(kWh)	(kWh)	(therms)
colid wasto	High moisture	38,169 dry tons	91,232,914	36,493,166	1,120,961
solid waste	Low moisture	60,916 dry tons	145,604,097	58241639	1,789,008
wastewater		5.7 billion gallons (26,805 tons BOD)	86,064,500	34,425,800	1,057,457

(1) Data collected but not reported in this form by Amón, R., M. Jenner, M., R.B. Williams, H. El-Mashad, S.R. Kaffka, *Draft California Food Processing Industry: Residue* Assessment. California Energy Commission

Management of Liquid Wastes

Best strategy is to reduce volume of waste streams

- Process optimization
 - Minimize water needed to achieve quality standards at each unit operation

Equipment and infrastructure repair/modification

- Replace less efficient equipment
- Take redundant, less efficient equipment offline
- Repair leaks in lines
- Recycling
 - Recycle unit operation effluent
 - Reuse effluent from one unit operation in another unit operation

Background

Motivation for wastewater management strategies

- Discharging less water
- Not exceeding regulatory limits for wastewater quality
- Generating bioenergy

Potential financial benefits

Regulated wastewater quality metrics assessed for discharged wastewater and for individual unit operations.

Using the wastewater quality assessment data to:

- 1. Determine which unit operation effluent streams contribute to exceeding of regulatory limits for discharged wastewater.
- 2. Determine if any unit operation streams are targets for reuse.
- 3. Determine which unit operation effluent streams are candidates for bioenergy production.

Anaerobic digestion:

In the absence of oxygen, certain microorganisms degrade organic matter and convert it to gaseous fuels.

Wastewater stream analysis from a California tomato processor

CIFAR Industrial Best Practices and the Water Energy Nexus

Solid waste assessment

Generally, fewer strategies exist for decreasing the amount of solid waste generated during processing.

Solid Waste Assessment

Motivation for solid waste management strategies

- Decrease any waste dumped at landfills
- Generate bioenergy
- Add value to waste beyond agricultural use

Potential financial benefits

Solid Waste Assessment

Collection of solid waste generated by various operations.

Summary

Deliverables:

- •Survey of wastewater streams with water quality assessment
- •Identification of candidate wastewater streams for reuse
- Identification of wastewater streams for anaerobic digestion
- •Estimation of wastewater remediation and biogas potential for target wastewater streams via anaerobic digestion
- •Survey of solid waste streams with estimation of solids reduction and biogas yield via anaerobic digestion
- •Analysis of codigestion of liquid and solid waste streams to optimize biogas yield from anaerobic digestion

Sustainable Design

The Rocky Mountain Institute (1) 10xE: Factor Ten Engineering

Factor Ten Engineering (10xE) aims to help engineers, architects and their clients attack resource intensive design problems, such as: manufacturing processes, buildings and vehicles.

Big Pipes, Small Pumps: Interface, Inc. Factor Ten Engineering Case Study

http://www.rmi.org/Knowledge-Center/Library/2011-04 BigPipesSmallPumps

(1) <u>http://www.rmi.org/</u>

Take Away Message

- Continuously evaluate the performance of the energy assets
- Adopt resource use reduction measures
- Achieve resource efficiency improvements: energy, water and air
- Invest in skilled labor
- Water will become more scarce without process improvement or conservation
- Invest in renewable energy sources to reduce air emissions
- Invest in efficiency to accrue cash flow benefits year after year
- Savings to support energy conservation and efficiency can also come from product quality improvement, raw material recovery increases, and increased process output

COMMENTS AND QUESTIONS

Contact Information:

Ricardo Amón University of California, Davis CIFAR

ramon@ucdavis.edu