

Used Oil LCA

CalRecycle

10/29/2013

Background

SB 546 – 2009

- Many changes, LCA one small part
- \$0.02 per gallon fee
- Somewhat vague requirement
- Include broad stakeholder participation

Initial Stages

– Fall 2010

Report to Legislature due Jan 1, 2014

What is an LCA

A compilation and evaluation of the inputs, outputs and the potential impacts of a product system throughout its life cycle. ISO 14040, 14044, 14049

Used Oil LCA Details

- Functional Unit
 - All used oil generated or managed in CA
- Scope
 - When oil becomes used
 - 2010=base year
 - 20-year time horizon
- Boundaries
 - Emissions followed regardless of source location

e names of the basic processes are shown.

Scaling factor:

Fixed

Occupation, industrial area, bui Areatime 8.86E-007 m2*yr

Free parameters

Fixed parameters **-**Show all flows Outputs nputs Alias Flow Quantity Amount Unit Tra 🔺 🛆 Alias Flow Ouantity Amount Energy, kinetic (in wind), conveEnergy (ne0.000113 Aniline [Hydrocarbons to fresh Mass MJ 1.69E-014 kg Energy, potential (in hydropow Energy (ne0.00291 MJ Aniline [Group NMVOC to air] 7.03E-015 kg Mass Energy, solar, converted [Ren(Energy (n(3.2E-006 MJ Anthranilic acid [Group NMVOC Mass 1.83E-017 kg Feldspar (aluminium silicates) [NMass Antimony [Heavy metals to agr Mass 2.01E-012 kg 4.17E-016 kg Fluorine [Non renewable elemerMass 2.79E-008 kg Antimony [Heavy metals to air] Mass 8.58E-011 kg Fluorspar (calcium fluoride; fluoMass 5.77E-007 kg Antimony [ecoinvent long-term Mass 2.44E-009 kg Gallium [Non renewable elemen Mass 5.86E-015 kg Antimony [Heavy metals to freeMass 3.98E-010 kg Gold [Non renewable elements] Mass 1.78E-012 kg Antimony (Sb122) [Radioactive Activity 6.32E-009 Bg Granite [Non renewable resour Mass 1.06E-014 kg Antimony (Sb124) [Radioactive Activity 1.93E-006 Bg Gypsum (natural gypsum) [Non Mass 1.41E-009 Antimony (Sb124) [Radioactive Activity 1.57E-011 Bq ka Hard coal ecoinvent [Hard coal Mass 0.00155 ka Antimony (Sb125) [Radioactive Activity 1.64E-010 Bg Indium [Non renewable elementMass Antimony (Sb125) [Radioactive Activity 1.86E-012 kg 1.89E-006 Bg Iodine [Non renewable elementMass 2.09E-012 kg Argon (Ar41) [Radioactive emis Activity 0.000826 Iron [Non renewable elements] Mass 0.000178 Aromatic hydrocarbons (unspecMass 5.07E-009 kg kg Kaolinite (24% in ore as mined) Mass 1.99E-008 kg Aromatic hydrocarbons (unspecMass 8.67E-009 ka Kieserite (25% in ore as mined) Mass Arsenic (+V) [Heavy metals to iMass 6.94E-011 kg 5.82E-011 kg Lead [Non renewable elements Mass Arsenic (+V) [Heavy metals to Mass 1.26E-007 kg 9.28E-010 kg Lignite ecoinvent [Lignite (resol Mass 0.000225 Arsenic (+V) [Heavy metals to Mass 1.17E-010 kg ka Limestone (calcium carbonate) Mass 0.000123 ka Arsenic (+V) [Heavy metals to Mass 1.6E-008 Lithium [Non renewable elemen Mass 1.72E-014 kg Arsenic (+V) [Heavy metals to Mass 5.45E-013 kg Magnesit (Magnesium carbonat Mass Atrazine [Pesticides to agricultuMass 2.51E-006 kq 1.89E-016 kg Magnesium [Non renewable ele Mass 1.41E-011 kg Barium [Inorganic emissions to Mass 1.27E-013 kg Manganese [Non renewable eleMass 1.01E-007 kg Barium [Inorganic emissions to Mass 2.3E-007 Metamorphic stone, containing Mass Barium [Inorganic emissions to :Mass 1.24E-009 3.15E-009 kg kq Molybdenum [Non renewable elMass 3.49E-008 kq Barium [Inorganic emissions to iMass 7.28E-008 kg Natural Aggregate [Non renew; Mass 0.0012 kg Barium [Inorganic emissions to Mass 2.19E-010 kg Natural gas ecoinvent [Natural Standard 10.0308 Nm3 Barium [ecoinvent long-term to Mass 7.24E-008 kg Nickel [Non renewable element: Mass Barium (Ba140) [Radioactive en Activity 2.42E-006 kq 1.06E-008 Bg Occupation, arable, non-irrigate Areatime 7.98E-008 m2*yr Barium (Ba140) [Radioactive en Activity 2.77E-008 Bg Occupation, construction site [| Areatime 3.43E-006 m2*yr Barytes [Inorganic emissions to Mass 4.72E-006 kg Occupation, dump site [Hemero Areatime 1.74E-005 m2*vr Benomyl [Pesticides to agricultuMass 2.03E-014 ka Occupation, dump site, bentho: Areatime 7.58E-006 m2*yr Bentazone [Pesticides to agricuMass 1.04E-013 kg Occupation, forest, intensive [|Areatime 3.85E-007 m2*yr Benzal chloride [Halogenated orMass 5.49E-016 kg Benzaldehyde [Group NMVOC t Mass Occupation, forest, intensive, rAreatime 6.1E-005 m2*yr 1.51E-013 kg Occupation, forest, intensive, Areatime 2.44E-007 m2*yr Benzene [Group NMVOC to air] Mass 4.24E-007 kg Occupation, industrial area [He Areatime 1.07E-005 m2*yr Benzene [Hydrocarbons to sea Mass 3.86E-010 kg Benzene [Hydrocarbons to fresMass 2.6E-009 Occupation, industrial area, bei Areatime 7.42E-008 m2*yr

Unit

Bq

ka

ka

kq

2.45E-011 kg

Benzo{a}pyrene [Group PAH toMass

Tra

....

.....

🖗 LCA 🛼 LCC 💊 LCWE

nputs/Outputs	uts/Outputs															Separate IO ta	ables
	Overview_AVH	Distillation	Distillation	Hazardous W	a Hazardous Wa	a Inter-Facility "	I Local Collectio	Lubricant Sale	Onsite Combu:	Rerefining	Rerefining	RFO INS	RFO OOS	Used Oil MFA	Used oil, impr	Waste water t	CA:
lows	-1.03E011	-6.48E010		3.41E007	8.51E006	6.86E008	1.2E008			-2.29E010	-6.2E009	-6.45E009	-4.08E009		8.58E008	5.29E007	
Resources	-4.95E010	-3.15E010		2.36E007	6.25E006	3.31E008	5.78E007			-1.08E010	-2.93E009	-3.1E009	-1.96E009		3.95E008	2.68E007	
Emissions to air	-5.52E009	-4.96E009		1.74E006	3.56E005	9.2E007	1.61E007			-4.33E008	-1.17E008	-9.93E007	-6.28E007		4.66E007	-9.25E004	
ecoinvent long-term to air																	
Heavy metals to air	1.42E003	-154		6.51	4.02	2.92	0.511			-113	-30.7	1.04E003	655		10.4	0.00383	
Inorganic emissions to air	-5.29E009	-4.82E009		1.74E006	3.52E005	9.1E007	1.59E007			-3.78E008	-1.02E008	-8.59E007	-5.42E007		3.67E007	-4.43E004	
Organic emissions to air (group VOC)	-2.26E005	-1.18E006		1.08E003	1.48E003	1.91E004	3.34E003			-4.15E005	-1.12E005	-1.77E005	-1.12E005		1.75E006	491	
Other emissions to air	-2.22E008	-1.39E008				1.06E006	1.85E005			-5.52E007	-1.49E007	-1.36E007	-8.58E006		8.06E006	-4.87E004	
Particles to air	4.4E005	-1.41E004		466	2.15E003	2.73E003	452			-2.08E004	-5.63E003	2.87E005	1.81E005		6.11E003	-7.3	
Radioactive emissions to air	0.686	0.331		0.0336	0.00918	3.23E-007	5.64E-008			0.245	0.0662	-4.21E-006	-2.66E-006		0.0011	7.64E-008	
Emissions to fresh water	-4.75E010	-2.82E010		8.7E006	1.9E006	2.62E008	4.58E007			-1.16E010	-3.14E009	-3.24E009	-2.04E009		4.16E008	2.62E007	
Emissions to sea water	-2.23E008	-1.34E008		2.46E003	371	1.53E006	2.68E005			-4.87E007	-1.32E007	-1.74E007	-1.1E007		1.76E005	-1.38E003	
Emissions to agricultural soil	7.12E005	3.42E003		426	58.9	-2.3	-0.402			2.83E003	767	-4.78	-3.02		7.04E005	0.00113	
Emissions to industrial soil	6.44E004	1.48E003		107	36	9.39	1.64			895	242	-40.9	-25.8		6.17E004	0.216	

How is this LCA different from Others

Functional Unit

Scope

Stakeholder Involvement

Economic integration

~\$3 million

Contractors/pieces

13 Contracts **Meeting facilitation** LCA LCA review **Economic analysis Data Providers Primary Data**

Economic Analysis

- Direct Impacts/"microeconomic" model
- Cost Benefit
- External Monetization
- Regional Impacts/"macroeconomic" model

Re-refiners Used oil distiller Virgin Petroleum Industry Haulers

NORA

CAW

Completed Reports

- To be published shortly:
 - Environmental LCA
 - Direct Impacts Model
 - Cost-Benefits Model
 - Peer Review

General Overall Findings

- Updated collection rates higher than previously thought
- Lubricating oil demand tending slowly downward
- Uncollected Oil is poorly-accounted for

LCA Baseline

2010-2030

- Major Environmental impacts driven by three elementary flows
 - Zinc: Ecotoxicity and human health, non-cancer
 - USEtox characterization model
 - Phosphorus: Eutrophication
 - Oil composition and emission/retention assumptions
 - Non-methane VOC: Human health, cancer
 - Little data available

LCA "Extreme" Scenarios

- No single "best" disposition route for used oil
 - RFO may be slightly less desirable than other options
- Improper management is always worse.
 - Dumping has large ecotoxicity impacts
 - Combustion with no controls has large GHG, Smog, and particulate matter impacts.

Hypothetical Policy Scenarios

- Table and Graphs
 - Reversed outputs for scenarios 9 and 10
 - Figure 5 clarity not emphasis
- Scenarios 2, 3, and 4
 - Environmental and economic benefits greatest in scenario 4
 - Dependent on price elasticity assumption

Interpretation Issues

- Combustion Modeling
- Confidential Data
- Benefits Transfer
- Toxicity Impact Assessment
- Primary Petroleum Refining
- Uncollected Oil

Used Oil Composition

- Preliminary data Continuing Efforts
 - Howard Mayo
 - Dave Gorton
 - Belinda Barlow
 - DK, Evergreen, Safety-Kleen, Crystal Clean

Phosphorus by Comp_Index - Phosphorus

Cal Recycle 🥥

Zinc by Comp_Index - Zinc

Sulfur by Comp_Index - Sulfur

Potential Policy Options

- Increase market value of used oil
- Decrease used oil generation
- Reduce use of used oil as RFO
- Targeted use of fees, incentives, etc
- Directly targeted efforts

Potential Research Options

Planned

- Uncollected Oil Research
- Increased knowledge of industrial oils
- Increased collection opportunities and convenience
- •Online tool
- •High efficiency filters research
- "Check Your Number" campaign

Potential Research Options

- Not yet planned
 - Enhanced combustion model
 - Enhanced primary refinery model
 - Behavioral/motivational research

Next Steps

- Report to the Legislature
 - Due January 1, 2014

Questions and Comments Robert Carlson Senior Integrated Waste Management Specialist <u>Robert.carlson@calrecycle.ca.gov</u>

916-323-3411

